Package: kfino 1.0.0

kfino: Kalman Filter for Impulse Noised Outliers

A method for detecting outliers with a Kalman filter on impulsed noised outliers and prediction on cleaned data. 'kfino' is a robust sequential algorithm allowing to filter data with a large number of outliers. This algorithm is based on simple latent linear Gaussian processes as in the Kalman Filter method and is devoted to detect impulse-noised outliers. These are data points that differ significantly from other observations. 'ML' (Maximization Likelihood) and 'EM' (Expectation-Maximization algorithm) algorithms were implemented in 'kfino'. The method is described in full details in the following arXiv e-Print: <arxiv:2208.00961>.

Authors:Bertrand Cloez [aut], Isabelle Sanchez [aut, cre], Benedicte Fontez [ctr]

kfino_1.0.0.tar.gz
kfino_1.0.0.zip(r-4.5)kfino_1.0.0.zip(r-4.4)kfino_1.0.0.zip(r-4.3)
kfino_1.0.0.tgz(r-4.4-any)kfino_1.0.0.tgz(r-4.3-any)
kfino_1.0.0.tar.gz(r-4.5-noble)kfino_1.0.0.tar.gz(r-4.4-noble)
kfino_1.0.0.tgz(r-4.4-emscripten)kfino_1.0.0.tgz(r-4.3-emscripten)
kfino.pdf |kfino.html
kfino/json (API)

# Install 'kfino' in R:
install.packages('kfino', repos = c('https://sanchezi.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • lambs - A dataset containing the WoW weighing for 4 animals of 1296 observations, https://doi.org/10.1016/j.compag.2018.08.022
  • merinos1 - A dataset containing the WoW weighing for one animal (merinos lamb) of 397 observations. https://doi.org/10.1016/j.compag.2018.08.022
  • merinos2 - A dataset containing the WoW weighing for one animal (merinos lamb) of 345 observations, difficult to model. https://doi.org/10.1016/j.compag.2018.08.022
  • spring1 - A dataset containing the WoW weighing for one animal of 203 observations. https://doi.org/10.1016/j.compag.2018.08.022

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.00 score 6 scripts 127 downloads 6 exports 31 dependencies

Last updated 2 years agofrom:9571659564. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-winNOTENov 13 2024
R-4.5-linuxNOTENov 13 2024
R-4.4-winNOTENov 13 2024
R-4.4-macNOTENov 13 2024
R-4.3-winOKNov 13 2024
R-4.3-macOKNov 13 2024

Exports:doutlierkfino_fitkfino_plotutils_EMutils_fitutils_likelihood

Dependencies:clicolorspacedplyrfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbletidyselectutf8vctrsviridisLitewithr

How to perform a kfino outlier detection

Rendered fromHowTo.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2022-11-03
Started: 2022-11-03

How to perform a kfino outlier detection on multiple individuals

Rendered frommultipleFit.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2022-11-03
Started: 2022-11-03